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III. Linear Transformations

� Properties of random sequence properties obtained as
outputs to LTI systems

mean, cross-correlation between input/output
sequences

� Frequency domain analysis  (output PSD for LTI
systems)
� Review of correlation matrix and eigendecomposition
properties
� Optimal filtering (Part 1)

- Orthogonality principle
-  FIR, IIR Wiener filter implementations

�Matched filter  (Part 2)
- Deterministic signal
- Random signal
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III. Linear Transformations

�  Goal:  processing of stationary random sequences
     using LTI systems

      Recall: Time domain analysis for LTI systems

�  Mean:

�  Input-output cross-correlation:

� �

� �

y t

y n

�

�

� �� �E y n �

� � � �� �*E x n y n � �

�

�

�

� �x t � �h t � �y t

� Output random sequence properties
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�  Output correlation:

�  Output covariance:
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•Example: Given x[n]  a RP with mean m0 and
covariance Cx(l)=�0

2�(l)
Compute the mean, correlation function, and
covariance function of the output y[n] to the LTI
system with impulse response h[n]=anu[n], |a|<1.
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�  Frequency domain analysis:  (output PSD for LTI
systems)

     Note: � � � � � �
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�  Recall: Properties of Correlation Matrices
Let R be defined as the correlation matrix R for the
stationary process x

(1)���(R) � 0

(2)  Rk has eigenvalues (�(R))k

(3)  if R is a correlation matrix, then it has the
following eigendecomposition

R = Q � QH �  :  diagonal eigenvalue matrix
 Q :  unitary eigenvector matrix

(4) The eigenvectors are � to each other
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�  Matched Filter
�  used to detect the presence of signals in additive
noise (radar, communications, etc…)

� Two cases are considered:

(1) Signal is deterministic

(2) Signal is random

•  x[n] exists between [n0, np]

•  noisy signal y[n] is defined as:
      y[n] = ys[n] + yn[n]
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�  h = [h[0],      h[p – 1]T;  x = [n(n0),      x(np)]T

�  y[n] =

Goal:  design the LTI filter
so that:

is maximized
at n = np� �
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�  Assume x[n] deterministic  (additive noise)
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Example:

 Find matched filter coefficients and maximized SNR.
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Comments: Consider the finite-duration deterministic signal s(n)
corrupted by additive noise v(n) with autocorrelation sequence rv(k) =
�2�|k| /(1��2�� We determine and plot the impulse response of an Mth-
order matched filter for a = 0.6, M = 8, �2= 0.25, and (a) � = 0.1 and (b)
�= -0.8.
Note that the signal vector is s = [1 a a2 …a7] T and that the noise
correlation matrix Rv is Toeplitz with first row [ry(0) rv(l) ...rv(7)].
The optimum matched filters are determined by h = Rv

-1 s0 and are shown
above.
Note that for  (1) � = 0.1 the matched filter looks like the signal because
the correlation between the samples of the interference is very small; that
is, the additive noise is close to white,

    (2) � = -0.8 the correlation increases, and the shape of the
optimum filter differs more from the shape of the signal. However, as a
result of the increased noise correlation, the optimum SNR increases.
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(2)  Assume x(n) is random sequence (additive noise)

• SNR is maximized when:

• White noise case:
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• Colored noise case
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Numerical Note:
You don’t have to compute the entire eigendecomposition to
get the maximum eigenvalue and its associated eigenvector

Proof:


